首页 万和城正文

采访了14位IT公司的创始人,他们如何看待2020年的AI行业?

admin 万和城 2020-01-06 267 0

科幻元年2020年马上就要来了。对于技术行业来说,这一年会有哪些值得期待的变化?

KDnuggets采访了14位科技前沿的技术公司创始人,并汇总了他们眼中的2020年:关于人工智能、数据分析、数据科学、机器学习行业中的一些最具创新性的公司的预测。

Alluxio创始人兼CTO李浩源:一个机器学习框架适合任何场景

带有模型的机器学习已经到了一个转折点,各种规模和各个阶段的公司都在努力训练他们的模型。朝着实施其模型培训工作的方向发展。尽管有几种流行的模型训练框架,但领先的技术尚未出现。

就像Apache Spark(专为大规模数据处理而设计的快速通用的计算引擎)被认为是数据转换工作的领导者和Presto(Facebook开发的数据查询引擎)逐渐成为交互式查询的领先技术一样,PyTroch和Tensorflow同样会作为2020年的竞争者来主导机器学习广泛的模型训练领域。2020年可能是我们看到领先者的一年,它打败PyTorch和Tensorflow作为,并将在更广泛的模型培训空间中占据主导地位。

K8s法分析堆栈

尽管容器和K8s在无状态应用程序(例如Web服务器和自包含数据库)上表现出色,但在高级分析和AI方面,我们还没有看到大量的容器使用。

在2020年,我们将看到在Kubernetes(简称K8s,提供了应用部署,规划,更新,维护的一种机制)领域承担AI和分析工作负载将变得更加主流。K8s法分析堆栈将意味着通过将数据从远程数据孤岛移到K8s集群中来解决数据共享和弹性问题,以实现更严格的数据局部性。

AI和分析团队将合并作为一个新数据组织的基础

昨天的Hadoop平台团队是今天的AI和分析团队。随着时间的流逝,出现了许多获取数据见解的方法。人工智能是结构化数据分析的第一步。过去的统计模型已经与计算机科学融合为人工智能和机器学习。

因此数据、分析和AI团队需要合作,从他们共有的数据中获取价值。这将通过构建正确的数据堆栈来完成,在本地或云端或同时部署存储孤岛和计算将成为规范。2020年我们将看到更多组织围绕此数据堆栈建立专门的团队。

Alteryx首席数据和分析官Alan Jacobson:数据民主化脱颖而出

2020年将是数据最终实现民主化的一年。在经历了过去几年的酝酿之后,数据分析从数据科学团队转向各行各业并趋于饱和整个业务的全面饱和,这一趋势最终将会陷入僵局。这种自适应的数据项自助服务革命将改变各个行业组织与数据交互的方式,弥合具有业务知识的人与具有数据知识的人之间的鸿沟。

借助易于使用的API和大量数据源的结合,自主助服务分析将应用于成为数字转换最重要的阶段之一,数据集成。典型的数据工作者开始从IT领域转移到业务领域,从而导致大量的工作者执行数据任务。结果将是处理更多的数据,进行更多的分析,最终对业务产生更大、更积极的影响。

Appen的首席技术官Wilson Pang

NLP的进步使聊天机器人得以广泛采用,并为用户提供在线问答等服务

今年和去年,我们已经看到了NLP(自然语言处理)的一些突破。例如,BERT扩展了NLP模型现在可以实现的功能。我们将在2020年看到越来越多的AI应用程序,如服务聊天机器人、在线问答、情感分析等。

机器学习工具和AIOps在企业中获得了更大的吸引力

在过去的几年中,我们目睹了整个机器学习和AI工具生态系统的成熟。围绕整个技术堆栈的工具,比如数据注释、模型训练、调试、模型服务、部署和生产监控。这些工具明年将会大量增加。

采访了14位IT公司的创始人,他们如何看待2020年的AI行业? 采访了14位IT公司的创始人,他们如何看待2020年的AI行业? 万和城 第1张


为了帮助管理所有这些工具,更多的公司将在2020年转向AIOps(基于人工智能的智能运维)的实践。大型公司的平台(例如AWS,GCP和Microsoft Azure)已经具有支持AIOps的良好工具,但是许多财富500强公司仍对部署到这些平台所在的云中持谨慎态度。

安全和道德最佳实践推动了更多本地AI部署

随着越来越多的组织针对其AI计划试验更多数据,对AI的安全性和符合道德规范地使用将变得越来越重要。在这个领域中,最主要的担忧是数据泄漏,尤其是个人身份信息(PII),新产品构想和专有信息。这些担忧将导致出现更多用于保护AI创造建的本地解决方案,包括数据注释和实现利用多元化人群的数据保护安全措施的解决方案。

确保安全的数据实践只是越来越符合道德规范的AI使用方法的一部分。这种方法还将包括关心人群的健康,并更仔细地考虑AI应用程序将如何影响使用它们的人,或者说,AI将如何让提升人们的生活质量旨在改善人们生活的方式。

Caserta的创始总裁Joe Caserta

2019年企业领导者认识到仅使用最强大的分析平台来创建报告是不够的。2020年将从人员,流程和技术的角度来实现更深入的成熟度分析。企业将开始发掘创新如何进行数据发现和实现商业智能(BI),并开始使用数据蜘蛛,机器人,人工智能和NLP来查询数据并更快地获得见解。我们即将迎来一场数据革命,它将彻底改变当前的格局,并把推动现代数据工程的发展推向其高潮。

机器数据智能平台Circonus的CEO,Bob Moul

物联网数据的价值的实现-大规模分析物联网数据所产生的决策将带来巨大的商机,有助于降低成本,减少停机时间,并在问题发生之前采取措施预防问题。

容器可观察性-在过去的几年中,许多人深入研究Kubernetes,学习并进行概念验证。到2020年,我们将看到大量此类部署上线,并与企业内部的DevOps(数据化运维)功能紧密结合,需要注意的是容器环境会发出大量指标,许多传统监控产品将因无法满足处理高基数的要求而无法使用。

物联网的增长需要一种创新性的存储解决方案,Gartner预测到2020年将有大约200亿个物联网设备。随着物联网网络的膨胀和技术上的突飞猛进变得越来越先进,管理它们的资源和工具也必须做到这一点。公司将需要采用可扩展的存储解决方案来适应数据的爆炸式增长,这个解决方案的存储容纳、处理数据以及提供洞见的能力都要远超现在的技术。

监视基础结构的复杂性增加-在诸如蓝绿色部署(是一种可以保证系统在不间断提供服务的情况下上线的部署方式)之类的DevOps技术实践的推动下,我们将看指标量将大幅度增加。

采访了14位IT公司的创始人,他们如何看待2020年的AI行业? 采访了14位IT公司的创始人,他们如何看待2020年的AI行业? 万和城 第2张


当你想利用这些技术并将其与快速CI(Continuous Integration,持续集成)/ CD(Continuous Deployment持续部署)结合使用您采用这些实践并将其与快速CI/CD结合使用时,你会发现已经有好几种组合版本供你挑选了。您会看到一些敏捷组织今天发布了十几种版本。然而,我们仍需要对这些技术工具进行重大改进以适应现代化进程更改以帮助支持这些用例。

dotData CEO兼创始人,Ryohei Fujimaki

在2019年,AutoML受到了越来越多的关注,因为各个机构组织已经意识到自动化机器自动学习(AutoML)尽可能多的数据科学的潜力能力和需求。但是传统的AutoML还受到高度人工化手动和巨大时间消耗的成功设计AutoML所需功能的过程所花费的大量时间的限制和阻碍。

2019年也是AutoML 2.0兴起的一年,也它是AutoML的新起点:体验的新迭代,它使用AI来利用关系数据集中的原始业务数据来自动创建特征并进行测试,评估和评分功能,然后自动和传统的机器学习算法做一比较。然后根据机器学习算法对其进行评估。

随着越来越多的组织机构供应商加入AutoML 2.0培训,我们预计到2020年数据科学全周期自动化的趋势将加速。2020年的另一个大趋势将是ML管道的运营和产品化,在已经进行的早期MLOps试验中,尽可能多地实现自动化变得越来越重要。

Infoworks CEO, Buno Pati

使用数据的能力将加速整个经济领域的洗牌,比过去更快地分出胜负

新挑战者的崛起速度将比未来十年更快,而现任领导人的崛起速度也将与之前一样。BCG(波士顿咨询公司,是世界领先的商业战略咨询机构)的研究表明,如今,对于大型公司而言,过去、未来的财务状况和多年的竞争绩效之间的关联现在越来越少。

目前,所有行业的数据科学家都将80%的时间花费在低价值活动上,例如提取数据,增量更新数据,组织和管理数据,优化管道以及将数据交付给应用程序。数据科学家仅将20%的时间用于开发应用程序,以实现业务的进一步增长和增加竞争优势。那些通过新的,自动化的数据操作和方法来使用数据功能的人将会蓬勃发展,因为他们将其数据科学的天才人才应用在创造业务价值上。

数字化转型的影响将在整个经济领域体现:预期的(技术,金融服务,零售/电子零售等)和意想不到的(农业,家居装修,公共部门等)方面。

随着下个十年隐私法的发展,消费者对“个人”数据的更具控制力

GDPR和CCPA(加利福尼亚消费者隐私法案)只是保护消费者和消费者的数据的冰山一角。在接下来的十年中,随着政府和监管机构制定新的隐私法规,消费者对个人数据的控制有望大大提高。

随着时间的流逝,这些监管措施可能会使消费者对个人数据有完全控制权,并为消费者提供直接将其数据货币化或交换商品和服务的机会。

清洁能源运动将在下一个十年创造大量的数据和新的分析方法

现在,美国增长最快的行业是太阳能和风能,未来十年中,这些行业的就业增长预计将是其他行业的两倍。(来源:加州第十七国会区的美国代表Ro Khanna)这些行业的技术进步使成本下降,并引发了清洁能源运动,在过去九年中使全球可再生能源产能翻了两番(来源:环境署)。


版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

评论